
Summing over Feynman histories by functional contour integration

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1986 J. Phys. A: Math. Gen. 19 3241

(http://iopscience.iop.org/0305-4470/19/16/022)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 19:23

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/19/16
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J.  Phys. A: Math. Gen. 19 (1986) 3241-3250. Printed in Great Britain 

Summing over Feynman histories by functional contour 
integration 
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Max-Planck-Institut fur Quantenoptik, D-8046 Garching, West Germany 

Received 16 May 1985, in final form 23 January 1986 

Abstract. We show how complex paths can be consistently introduced into sums over 
Feynman histories by using the notion of functional contour integration. For a k- 
dimensional system specified by a potential with suitable analyticity properties, each 
coordinate axis is replaced by a copy of the complex plane, and at each instant of time a 
contour is chosen in each plane. This map from the time axis into the set of complex 
contours defines a functional contour. The family of contours labelled by time generates 
a ( k +  1)-dimensional submanifold of the ( 2 k f  1)-dimensional space defined by the car- 
tesian product of the time axis and the coordinate planes. The complex Feynman paths 
lie on this submanifold. The convergence problems encountered in previous proposals for 
complex path integrals are avoided by the requirement that each contour is asymptotically 
pinched to the real coordinate axis. An application of this idea to systems described by 
absorptive potentials yields a simple derivation of the correct WKB result in terms of a 
complex path that extremalises the action. The method can also be applied to spherically 
symmetric potentials by using a partial wave expansion and restricting the contours 
appropriately. 

1. Introduction 

Feynman’s representation of quantum mechanics as a sum over histories (Feynman 
and Hibbs 1965) was first formulated to deal with conservative systems having Her- 
mitian Hamiltonians, but it has also proved useful in the treatment of dissipative 
systems phenomenologically described by complex potentials. The most prominent 
examples are scattering in a nuclear optical-model potential (McLaughlin 1972a, 
Koeling and Malfliet 1975, Knoll and Schaeffer 1976) and propagation of laser beams 
in absorptive media (Kogelnik 1965, Arnaud 1976). The path integral treatment of 
these problems can be given in terms of sums over conventional real trajectories 
(McLaughlin 1972a, Exner 1982, Exner and Kolerow 1982, Wright 1984); however, 
the classical action now possesses an imaginary part so that it is not possible to obtain 
the usual semiclassical results associated with the trajectory that extremalises the action. 
It is possible to find a trajectory for which the real part of the action is stationary, but 
this path does not necessarily dominate the integral. The imaginary part of the action 
produces a damping which varies with the path; consequently it is necessary to 
determine the set of real paths with minimum damping in order to find an approximation 
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to the integral. A number of authors (McLaughlin 1972a, Koeling and Malfliet 1975, 
Knoll and Schaeffer 1976) have attempted to avoid this problem by generalising the 
Feynman integral to include all complex paths joining the prescribed initial and final 
points. These theories are plagued with extreme divergence difficulties, so that integra- 
tion over complex paths is even less well understood than integration over real paths. 
The objective of the present paper is to show that complex paths can be consistently 
introduced into the theory of Feynman path integrals by means of the notion of 
functional contour integration. We stress that, in common with ordinary contour 
integration, this technique simply provides a new representation of the original theory 
which is exactly equivalent to the conventional formulation in terms of real trajectories. 
The advantage of the new representation is that a suitable choice of the functional 
contour yields a simple calculation of the semiclassical limit. An illustrative application 
of this procedure can be found in a previous paper (Garrison and Wright 1985). In 
the present paper we do not present any new results for propagators; instead we are 
concerned with justifying results previously obtained by ad hoc methods. 

In 9 2 we define the notion of functional contour integration for k-dimensional 
systems described by potentials which are analytic except for fixed singularities, i.e. 
the locations of the singularities in any coordinate are independent of the values of 
the other coordinates. Under these circumstances we show in § 3 that the correct WKB 

result for an absorptive potential can be obtained by a simple stationary action 
calculation. In § 4 we extend the method to include problems involving spherically 
symmetric potentials. This is done by using the well known partial wave expansions 
(Edwards and Gulyaev 1964, Peak and Inomata 1969, Langguth and Inomata 1979) 
and deforming the radial path integral by means of contours which lie in the right half 
of the complex radius plane. In P 5 we make a few remarks on the problem of calculating 
barrier penetration factors with the path integral method, and in 0 6 we give a summary 
and conclusions. 

2. Functional contour integrals 

For definiteness we consider a quantum mechanical system with a k-dimensional 
configuration space and a complex potential V ( x )  given by 

V(x) = V,(x)-ihV,(x) 

where x = (x, , . . . , x k ) ,  the functions V, and VA are real and VA is non-negative. The 
explicit factor of h is associated with the absorptive part of the potential in order to 
conform with the usual conventions (Guillod and Huguenin 1984). We restrict the 
potential by the assumption that it is jointly analytic in the (Cartesian) coordinates 
xl, . . . , x k .  That is, the function originally defined on the real configuration space Rk 
can be extended into an analytic function defined on the complex configuration space 
Ck. Thus each coordinate axis is replaced by a (complex) coordinate plane, and 
x, -, z,, CY = 1,.  . . , k Furthermore, the location of any singularity, for example a pole 
or branch point, in a given variable z, is required to be independent of the values of 
the other variables. We refer to such singularities as fixed. Potentials with non-fixed 
singularities would not be generally amenable to our technique; however, in some 
cases, such as a spherically symmetric potential, it is possible to recast the problem 
so that it can be treated by this method. For one-dimensional problems the fixed- 
singularity condition is trivially satisfied. An example of a multidimensional problem 
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with this property is provided by an anharmonic molecular model in which the 
interaction between the vibrational modes is given by a finite-order polynomial in the 
variables x, , . , , , xk. In this case the singularhies in the analytically continued potential 
come entirely from the terms involving only one of the coordinates at a time. 

The Hamiltonian for the k-dimensional system is 
k 

H =  c ;p:+ V(x) 
a = ,  

where units have been chosen so that the masses are unity. The condition that V, is 
non-negative guarantees that Re( 4, -iH+) S 0, for any state 4. The operator - iH is 
then said to be dissipative (Exner 1985, p 152) and the Trotter product formula holds 
for the one-parameter semi-group of time evolution associated with -iH. The derivation 
of the Feynman integral as a limit of multiple ordinary integrals can therefore be 
carried through (Exner 1985, ch 6 )  with the following results (Wright 1984) for the 
propagator K ( e ,  0) between the points xo at time to and x, at time t ,  : 

K ( e , O ) =  n-m lim K,(e ,O) ,  (2.2) 

K, (e ,  0 )  = A, I dx, . . . 1 dx,-] exp( ' ' ' '  xn) 
h 

where dxj = (dx,)j. . . (dxk)j, and the action is given by 
2 

- v(xj - 1)) * 
(xj - xj- 1 )  Sn(xO,.  . . , x,) = A t  

j = 1  ( 2At2 

In this equation the quadratic term represents a k-dimensional dot product, the 
normalisation constant A, = ( 2 ~ i h A t ) - " ~ ' ~  and A t  = ( t ,  - t o ) /n .  The individual 
integrals dxj are carried out over the real configuration space Rk of the system. The 
analyticity assumptions made above show that the integrand is analytic except for the 
fixed singularities of the potential; therefore, for each j ,  i.e. for each time step, the 
integral over each of the k coordinates (x,, . . . , xk) can be distorted away from the 
real axis (-03, 03) to any desired contour as long as none of the fixed singularities are 
included. Note that the endpoints of the contours also remain fixed so that each 
individual contour looks like the example in figure 1. Since the contour avoids the 

\ . 
......- 

a 
Re (2,) 

Figure 1. The contour r, at the jth time step is asymptotically pinched to the real axis and 
passes through the point 2, determined by the solution to the complex classical equations 
of motion. 
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fixed singularities, convergence problems can only arise from the behaviour of the 
integrand at infinity, where the kinetic energy term is dominant. Here the fact that 
the contours are asymptotically pinched to the real axis is essential. The explicit 
expression (2.3) for the action S ,  shows that the convergence of the integral over xj 
is equivalent to the convergence of integrals of the form 

00 

I = [-, dx exp(ix2 + wx) 

where w a (xj+, + xj-,) is in general complex, since the neighbouring variables will not 
lie on the asymptotic parts of their contours. This integral is of the Fresnel form and 
converges for any complex w. Thus the convergence of the new representation is 
guaranteed by the same mechanism, i.e. rapid oscillation, that controls the convergence 
of the original real representation (2.2). The new representation is 

where r ( j )  = (r , ( j ) ,  . . . , rk(j)), is a k-tuple composed of the integration contours 
r,(j)  in the a th  coordinate plane at the j th  time step and dz, = (dz,), . . . (dzk),. For 
each ( j ,  a) the contour r,(j) is asymptotically pinched to the real axis and excludes 
any singularities of the action S (  z l ,  . . . , z,, . . . , zk) in the variable z, ; otherwise the 
contour can be arbitrarily chosen. The action S,(z) is the analytic continuation of 
(2.3). For the class of analytic potentials with fixed singularities we now have a new 
representation, equivalent to the original one, of the discretised form of the Feynman 
integral. The final result for the propagator K (  e, 0) is obtained by taking the n + 00 

limit of (2.4). 
In the usual case of real-path Feynman integrals it is customary to describe the 

n + 00 limit in terms of a functional ‘integral’ over the class of continuous paths. It is 
of some interest to construct the analogous continuous description of the complex-path 
integral. To this end we regard the assignment t, + r ( j )  as a function from the discrete 
times t, to the set Zk of k-tuples of asymptotically pinched contours. We want to 
extend this to a function r ( t )  which is continuous in f. For this purpose it is not 
sufficient merely to replace the discrete time t, by the continuous time t ;  we must also 
introduce a notion of distance in Z in order to define r(t)  as a continuous function. 
One suitable distance function d ( r ,  r’) is given by 

d ( r , r ’ )=sup{ l Im(z , -~&)( :  Z , E ~ , , Z & E T &  Re(z , -z&)=o,a=1,  . . . ,  k} 
i.e. the largest vertical separation of any two contours. As n + 00, r, + t, and continuity 
of r(t) simply means that 

d ( r ( t+At ) , r ( t ) )+o  as At  + 0. 

The choice of a function r(t) is analogous to the choice of an ordinary integration 
contour, and it defines our notion of functional contour integration. Just as for the 
normal contour integral, it is essential to choose the functional contour to exclude 
singularities of the integrand. For a given functional contour r( t ) ,  we define a r path 
to be a continuous function z( t )  = ( zl, . . . , zk) which satisfies z,( t )  E r,( t )  for all t. 
The continuity of r( t )  is necessary for the consistency of this definition. The n + 00 

limit of (2.4) is then formally written as a continuous functional integral: 
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where 

and F is the set of all r paths joining the initial and final points xo and x,. Equations 
( 2 . 5 )  and (2.6) are the main results of this paper. 

The notion of paths can be given a geometrical interpretation as follows. Consider 
the set M ( r )  = {( t, w l , .  . . , wk): t E R, w, E ra(t )} .  This set can be regarded as a sub- 
manifold of the space M = {( t, ul, . . . , uk): t E R, U, E C, a = 1, . . . , k } .  The (real) 
dimension of M is 2 k +  1, whereas the dimension of the submanifold M ( T )  is k + 1. 
This formulation has the virtue of being visualisable for the case k = 1, where M is 
three dimensional and M ( T )  is two dimensional; this case is shown in figure 2.  In 
this setting a r path is simply a curve in M which is required to lie in the submanifold 
M ( r ) .  By contrast, the naive generalisation to the complex case would involve sums 
over all paths in M. On some of these paths the kinetic energy term in ( 2 . 6 )  would 
assume large positive imaginary values. This would produce Gaussian divergences in 
the path integral. A glance at figure 2, shows that the restriction to paths prevents 
this divergence. Since the allowed paths must pass through the given contours, the 
asymptotic pinching condition guarantees that large velocities can only occur in an 
essentially real direction. This means that large kinetic energies are also essentially 
real and the convergence argument given in 0 2 applies. Thus the functional contour 
method, which we have derived from the real-path integral, supplies the prescription 
required to make sense of the use of complex Feynman paths. 

X, 
R e  12,) 

Figure 2. The submanifold M ( r )  defining the functional contour integral for a one- 
dimensional problem. The surface M ( T )  is shown ruled by contours at successive time 
steps. The smooth curve through the peaks represents the complex classical trajectory and 
the broken line path represents a typical approximate Feynman path. 

3. WKB calculations 

The purpose of this section is merely to show how the functional contour method 
allows one to obtain WKB results for absorptive potentials in a simple manner. The 
calculations will be carried out in the usual approximation in which only second-order 
terms in the variation of the action are retained; consequently we will simplify the 
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discussion by restricting ourselves to one-dimensional systems. The generalisation of 
the argument to higher dimensions will be obvious. Since the use of complex Feynman 
paths is unfamiliar, we will carry out the calculation in the discretised form and then 
take the limit. This allows the details of the choice of contours to be explicitly displayed. 

The absorptive term in the potential will in general prevent the existence of a real 
trajectory extremalising the action; however, we can look for a complex solution of 
the extrema1 condition 

aS,(zo,. . . , z,)/az, = 0 j = l , .  . . , n - I  

with the end conditions zo = xo and z, = x,. If there is more than one solution, there 
will be several terms in the WKB approximation for the propagator. For simplicity, we 
assume that the solution is unique. Denote the solution by Z,, then the expression 
(2.3) for S,  yields the difference equations 

(Z,+l-2Z,-Z,-,) /At2= -(dV(z)/az)lz=Z, 

which form the discrete approximation to the analytically continued equation of 
motion: 

d2Z/dt2 = -a V(Z)/aZ. 

We choose the functional contour T ( r )  to pass through Z ( t ) ,  i.e. in the discrete 
approximation r, passes through Z, for each j. The stationary point is expected to 
dominate the integral so the action can be expanded about the solution Z,. The algebra 
is the same as for the real case, so the result is 

&,(e, 0) = A,F, exp[iS,(Z)/hI 

where 5 is a column matrix with elements 5, = (z, - Z,). The contour r, passes through 
the origin in the 5, plane and the matrix U is given by (Schulman 1981) 

U = ( 1/2At2) J -4 W 

where W is 

w,, = 8,(a2v/dzz)lz = 4 
and J, ,=2 ,  i = l ,  . . . ,  n - 1 ;  J , , , + , = - l ,  i = l ,  . . . ,  n-2;  J , - l , , = - l ,  i = 2 , .  . . , n - 1 ;  all 
other J,, = 0. As usual we make no attempt to determine the corrections due to 
higher-order terms in 5; however, it should be noted that in this connection the complex 
paths introduce no new problems as opposed to the real-path calculation. This follows 
from the restriction to asymptotically pinched contours. 

The standard method for evaluating Gaussian integrals like (3 .1 )  involves expanding 
the integration variable 5 in the eigenvectors of the matrix U (Schulman 1981) and 
this can be a problem in the complex case. When U is real-symmetric the existence 
of a complete set of eigenvectors is assured, but this is not guaranteed when U is 
complex-symmetric. An alternative sufficient condition for completeness is that all the 
eigenvalues of a (+be distinct (Lancaster 1962). If there is degeneracy in the eigenvalues, 
we can imagine removing it by a small alteration in the potential. The calculation with 
the altered potential could be carried out by the standard method and the original 
integral recovered by evaluating this function of the potential at the original value. 
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This will normally give the correct result if there is no singularity, i.e. as long as the 
original integral converges. Since the integral is known to converge, it is reasonable 
to limit our attention to matrices CT having a complete set of eigenvectors. 

Let u l ,  . . . , U, be the complete set of eigenvectors, with corresponding eigenvalues 
A , ,  . . . , A,, then set 

c = c ajuJ 
j 

and use the coefficients a, as new integration variables. The integal now has the form 

The specification of the full integration domain in terms of the variables a would be 
very complicated, but we are only interested in a small patch near the origin. The 
calculation from this point on is a standard steepest-descents problem (Morse and 
Feshbach 1953). The contours rl are chosen so that near the origin aj = sJ exp(i+,), 
where sJ is real and 

This yields 

which has the same form as the standard result for the real-potential case (Schulman 
1981). The fact that the eigenvalues Aj are complex has no effect on the subsequent 
calculations, so the n +CO limit is given by (Schulman 1981) 

where f(t) is the Jacobi field which is defined by 

d2f/dt2+ W(t)f(t)  = O  
W (  t )  = (a’v(z)/az’)lz = Z (  t )  

f ( t 0 )  = 0 f ( l e )  = 1. 

Thus the expected WKB limit of the propagator for an absorptive potential is obtained 
from the functional contour representation of the path integral by determining the 
path of stationary complex action. An application to the simple case of an absorptive 
harmonic oscillator potential was given previously (Garrison and Wright 1985). 

4. Spherically symmetric potentials 

We now consider a three-dimensional problem described by a complex spherically 
symmetric potential. The function V(x) then depends on x only through the combina- 
tion r = (x: + x: + x:)’/’. Analytic continuation in the Cartesian coordinates cannot 
produce a potential with fixed singularities, since the function r(x) has a branch point 
in xI, say, which depends on the values of the other coordinates. Fortunately, this 
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problem is eliminated by the formulation of the real-path integral representation in 
terms of radial path integrals (Edwards and Gulayev 1964, Peak and Inomata 1969, 
Langguth and Inomata 1979). In this approach one writes the propagator in a partial 
wave expansion: 

COS e = COS ee COS eo + sin e, sin Bo cos( & - do). 

The coefficient K '  is given by the following discretised path integral: 

K ' = l i m  Kf ,  
n+m 

K f, = A, lom dr, . . . lom dr,-, exp( ?) 

We now assume that V(r) is analytic in r, with possible isolated singularities. The 
integrals over r, , . . . , can then be deformed at will, provided that singularitles of 
V( r) are avoided and that each contour is pinched to the real axis at r = 03 and r = 0 
and also remains in the right half of the complex r plane. The last restriction is 
necessary in order to guarantee the convergence of each integral at rj = 0, regardless 
of the values of the other variables. We thus get a representation similar to (2.4) with 
k = 1 and contours as just specified. The resemblance to the one-dimensional problem 
can be enhanced by first making a Langer transformation in which r is replaced by 
w =In( r ) .  The origin is then removed to --CO and the general formula (2.4) can be 
used after rewriting the action as a function of w. 

5. Tunnelling 

It has often been suggested that tunnelling through a real potential barrier could be 
treated by the use of complex classical trajectories. On the other hand, a successful 
path integral treatment of tunnelling was given by McLaughlin (1972b) which involves 
real paths but complex time. We would like to point out that complex time is required 
in one-dimensional tunnelling calculations. Consider a real potential with a barrier 
which lies between the points xo and x,.  Suppose that there is a complex trajectory 
z( t )  joining these two points which corresponds to an energy E lying below the 
potential maximum, i.e. 

dz/dt  = [2( E - V (  z ) ) ] " ~  z(0) = xo z( T )  = xl. (5 .1 )  

Let r be the curve in the z plane described by z(t) .  Then the time interval T can be 
evaluated by inverting (5.1): 
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Since the potential is real there is a second solution given by z * ( t ) ,  so that T*(T) = 
T(T*). Consequently the imaginary part of T is given by the difference between the 
two integrals, i.e. 

for any contour y enclosing the branch points of the integrand defined by E = V ( z ) .  
Thus Im T cannot vanish and a complex time is required to treat the problem of 
tunnelling. In McLaughlin’s work a contour in complex time is chosen so that the 
trajectory remains real. In higher-dimensional problems it will not be possible in 
general to keep all the coordinates real. In this context the use of functional contour 
integrals may be advantageous, since the contours can be deformed to follow the 
behaviour of the variables required in the tunnelling problem. 

6. Summary and conclusions 

We have shown that complex paths can be consistently introduced into Feynman 
integrals by restricting the paths to a certain submanifold in the complex configuration 
space of the problem. This notion of functional contour integration produces a 
representation of the propagator which is free of the divergences associated with 
proposals to define the path integral over all complex paths. For a non-relativistic 
k-dimensional system, we must assume that the singularities in the analytically con- 
tinued potential are fixed, i.e. the location of a singularity in one of the variables is 
independent of the singularities in the other variables. This condition is automatically 
satisfied for one-dimensional problems, but it does impose restrictions on the potential 
for the general ( k >  1) case. As an example of an admissible potential for a multi- 
dimensional problem one could consider a molecular model in which the interaction 
term is a polynomial in the coordinates x, , . . . , xk. Since the remainder of the potential 
is a sum of terms, each involving only one coordinate, the fixed singularity condition 
is satisfied. For the important special case of a spherically symmetric potential in three 
dimensions, the fixed singularity condition can be avoided by first expressing the 
propagator as a partial wave expansion and then applying the functional contour 
method to the remaining (one-dimensional) radial problem. Since one-dimensional 
and spherically symmetric problems comprise the bulk of the interesting applications, 
it would seem that the fixed singularity condition is not a serious limitation in practice. 

The most obvious advantage of the complex path formulation is that the WKB 

results for absorptive potentials can be obtained by a straightforward stationary phase 
calculation as seen in § 3. The utility of this formulation for tunnelling problems is 
not clear, since the one-dimensional problem requires the use of complex time and 
the trajectory can be kept real. However, it is possible that complex paths can be used 
in the description of tunnelling processes in higher dimensions. 

Finally we should briefly indicate the relation, or rather the lack of relation, between 
functional contour integration, Wick rotation and path integral representations of the 
partition function. Both of the latter notions are loosely related to the ideas of 
McLaughlin (1972b) discussed in § 5 .  In relativistic field theories it is sometimes useful 
to consider a rotation of the time (or energy) coordinate into the imaginary axis, in 
order to obtain a Euclidean form of the theory. This is similar to McLaughlin’s idea 
of using a complex time variable while keeping the spatial coordinates real. By contrast 
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we propose to keep the time coordinate real but allow the spatial coordinates to acquire 
imaginary parts in a way strictly limited by the use of r paths. In statistical mechanics 
it is also often useful to calculate the partition function as a Wiener integral, which 
may be thought of as an analytic continuation of the Feynman propagator to purely 
imaginary time. Again this has no bearing on our proposal, which is intended for 
application to scattering and propagation problems. 
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